Usage
In order to integrate the HeapDebugger into your project, simply include “HeapDebugger.h” and add a HeapDebugger object to the start of the scope you are interested in debugging. The debugger will only be used when a HeapDebugger exists. In order to set an output file, simply pass the file name as the argument to the constructor.
Example:
int main(int argc, char** argv)
{
 HeapDebugger dbg(“leaks.log”)
}

If you are using placement new, you can #define DONT_DEFINE_NEW before including “HeapDebugger.h”. If you do this, your placement new will work, but no line numbers will appear in your leak log.

Behavior
Memory leaks are detected when the HeapDebugger goes out of scope. The debugger reports the line number of the allocation, as well as a call stack up to 12 frames deep not including the top 4, which are internal to the heap debugger.
On read/write overflow, read/write deleted, and double delete an access violation will occur immediately. There is currently no support for underflow.
On new/delete mismatch a C++ exception is thrown on the delete. The location of the new is included in the exception and can be extracted when caught.
On deletion of memory which did not come from the heap debugger an exception will be thrown.

Implementation
Allocations are tracked in a hash map to make deletions faster and simpler, plus the memory overhead is nothing compared to the memory overhead of the PageAlignedAlloc.
Deleted pages are decommited then tracked in a queue until 10 new allocations are made, then released.
new has been replaced with a #define in order to get the file and line number of the call.
[bookmark: _GoBack]New and delete first check for an instance of the heap debugger, if it doesn’t find one it just uses malloc or free. If it does find one, it calls the appropriate method in the HeapDebugger. This allows the program to function mostly normally when there is no HeapDebugger.
